
Creating and Evolving Software by
Searching, Selecting, and Synthesizing

Relevant Source Code

Abstract
When programmers develop or maintain software, they instinctively sense that there are fragments of code that other developers implemented somewhere, and thus these
code fragments could be reused if found. In this paper we propose a novel solution that addresses the fundamental questions of Searching, Selecting, and Synthesizing
(S3) software based on the analysis of Application Programming Interface (API) calls as units of abstractions that implement high-level concepts (e.g., the API call
EncryptData implements the cryptographic concept).

Background
The three main problems inhibiting mainstream software reuse
practices are how to search source code effectively, how to
select retrieved code snippets from relevant retrieved
applications, and how to bridge the abstraction gap between a
design and low level implementations.

State-of-the-art code search engines, such as Google Code
Search, match words from search queries to the identifiers or
comments in open-source projects. Unfortunately, these
engines provide no guarantee that found code snippets
implement concepts or features described in queries.

Programmers use third-party API calls to implement high-level
requirements. Rather than attempting to directly map user
queries to source code elements, we aim at connecting queries
to usage documentation, then documentation to API calls, and
then those calls to the relevant parts of source code based on
which elements contain those calls.

We propose unifying searching, selecting, and synthesizing
into a single framework (the S3 architecture) based on the
common abstraction and behavior-specific compositional
mechanisms of software systems (e.g., API usage).

Figure 1. An overview of the S3 architecture. The S1 component searches for relevant
applications from source code repositories, S2 selects relevant fragments of code from those
applications (at varying granularity), and S3 synthesizes those relevant fragments into the user’s
code at his or her discretion.

Help Pages

Help Page
Processor

API Calls
Dictionary

API Call
Lookup

API Calls Ranking
Engine

Application
metadata

Relevant
Fragments

Source
Selection

Engine

Relevant
Applications

Static
Analyzer

Retrieved
Applications

Code
Synthesizer User

Source
Search
Engine

Source
Code

Crawler

Project
Archive

S1
S2
S3

SEMERU Denys Poshyvanyk1, Mark Grechanik2,3, and Collin McMillan1
1Computer Science Department, College of William & Mary, 2Accenture Technology Labs, 3Computer Science

Department, University of Illinois, Chicago

S3 Walkthrough
In S1, help pages are processed to associate text documentation to API calls. These are then linked to
user queries with a natural language processing technique. A ranking engine combines this
information with programs retrieved from a code search engine. The progress on indexing open-
source software is presented in Table 1.

The code search engine chooses relevant applications from the index created by our source code
crawler using the same user queries. In this way, structural and textual search methods are combined.
Relevant applications are then statically analyzed to retrieve metadata. Metadata contain dataflow and
dependencies among API calls.

The ranking engine melds metadata with the lists of relevant API calls. Outputted is a list of the
relevant applications which use the relevant calls.

Given this set of relevant applications, the S2 component selects portions implementing functionality
described by user queries.

Source Code Crawler
Table 1. We are building and testing our own
source code crawler for downloading, extracting
and indexing open-source applications from
repositories, such as Sourceforge.net.

Further Information
Visit Semeru: http://www.cs.wm.edu/semeru/
Email Denys Poshyvanyk: denys@cs.wm.edu
Email Mark Grechanik: drmark@uic.edu Ranked List of Results API Class

Documentation User Queries API Calls Software Classes

?
?

•  ()
•  ()

•  ()
•  ()
•  ()

•  ()

1.  …
2.  …
3.  …
…

S2 Essentials
As a preliminary step, we tested an implementation of the S2
component.

We focused on the official Java API documentation and 40
publicly available Java examples1. By using the given example
descriptions as an oracle for mapping the user queries to
source code fragments, we were able to compute accuracy,
discovery, and their harmonic mean.

1http://www.java2s.com/

Figure 2 (below). An overview of the approach. We find the
textual similarities between user queries and API
documentation with Latent Semantic Indexing (LSI), filtering
results with a similarity threshold.

Figure 3 (right). We ran every query through our system
across the thresholds 0.05 to 0.85 in increments of 0.05. We
then computed the average accuracy of all positive
accuracies by looking up the correct result from the oracle.

Our system returns very high accuracy but relatively low
discovery, typically providing the correct result within the top
three answers, or not at all.

Items Count
Java Projects 21,934

Files 38,330
Files Downloaded (*.zip, etc.) 31,371

Files Skipped (*.exe, *.pdf, etc.) 6,959
GB Downloaded 105.62 GB

GB Skipped 45.71 GB
Files Indexed by Lucene 10,897

Java docs in index 100,866

